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Flexible parametric survival models using cubic splines become popular in 
survival data analysis. The property of allowing converging hazard functions 
leads them to be the alternatives to Cox proportional hazards model and 
parametric survival models. In this study, flexible parametric survival models 
are applied to the data set of 106 gastric cancer patients. According to this 
data set, metastasis and muscle contraction are found as important risk 
factors on survival. 
 

Keywords: 
Cancer 
Parametric 
Proportional hazards 
Spline 

© 2017 The Authors. Published by IASE. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

  

1. Introduction 

*Cox (1972) proportional hazards (PH) model is 
widely used in the analysis of time-to-event data 
with censoring and covariates. However, it has some 
disadvantages such as the estimation of baseline 
hazard function and the assumption of PH. The 
baseline hazard function is treated as a high-
dimensional nuisance parameter and consequently 
parametric survival models may be appropriate to 
estimate it. When the PH assumption is violated, 
parametric survival models give more precise 
estimates and lead to some benefits. Another, 
important but less widely used model in survival 
analysis is proportional odds (PO) model. This model 
becomes a candidate model under non-proportional 
hazards. In this study, flexible parametric survival 
models suggested by Royston and Parmar (2002) 
based initially on the assumption of either PH or PO 
scaling of covariate effects is examined. The class of 
such models is based on transformation of the 
survival function by a link function proposed by 
Younes and Lachin (1997) using the parameterized 
link function of Aranda-Ordaz (1981). Royston and 
Parmar (2002) used restricted cubic splines to 
model baseline hazard directly. The restricted cubic 
splines offer greater flexibility in shape of the hazard 
function when compared with standard parametric 
models (Nelson et al., 2007). The purpose of this 
study is to present the flexible parametric survival 
models of Royston and Parmar (2002) and apply the 
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models to the real data set in cancer. The 
comparison of the models is also discussed. 

2. Method 

2.1. Survival models 

Cox PH regression model which was discussed by 
Cox (1972) is used for analyzing censored survival 
data. The general Cox PH model is defined through 
the hazard function h(t) as 

 
ℎ(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝(𝛽′𝑧)  

 
where z is a covariate vector and h0(t) is the baseline 
hazard function. The model may be written in 
integrated form as 
 

𝐻(𝑡) = (∫ ℎ0(𝑢)𝑑𝑢
𝑡

0
) 𝑒𝑥𝑝(𝛽′𝑧) = 𝐻0(𝑡)𝑒𝑥𝑝(𝛽′𝑧)  

 
where, H(t) is the cumulative hazard function. The 
model has an assumption of proportional hazards, 
however it has no distributional assumption. The use 
of Cox PH regression model may have two difficulties 
such as: 

Baseline hazard function: In the Cox PH model, 
the baseline hazard function, which may be 
estimated by the method of Kalbfleisch and Prentice 
(1980) among others, is treated as a high-
dimensional nuisance parameter and is highly 
erratic. However, the behavior of the hazard function 
is of potential medical interest because it is directly 
related to the time-course of an illness. To estimate it 
informatively (that is, smoothly), some type of 
parametric model may be appropriate (Royston, 
2001).  
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Non-proportional hazards: A second issue is how 
to deal with non-proportional hazards which may 
occur, for example, when modelling prognostic 
factors in studies with medium or long follow-up 
times. Although the Cox PH model may be extended 
to allow for non-proportional hazards, for example 
by incorporating time varying regression coefficients 
there is no ‘natural’, widely accepted approach, and 
obtaining a satisfactory model can be complicated. 
There are further concerns about the complexity 
involved in the practical interpretation of the 
coefficients and in the robustness of such models 
(Royston, 2001). 

An alternative approach to modelling survival 
data is the PO model which was first described in a 
semi-parametric framework by Bennett (1983) and 
was further developed by several authors, including 
importantly by Dinse and Lagakos (1983), Crowder 
et al. (1991), Collett (1994), Rossini and Tsiatis 
(1996), Yang and Prentice (1999), and Kirmani and 
Gupta (2001). The model assumes that the effect of 
the covariates is to increase or decrease the odds of 
dying by a given duration by a proportionate 
amount: 

 

𝑂(𝑡; 𝑧) =
1−𝑆(𝑡;𝑧)

𝑆(𝑡;𝑧)
=  

1−𝑆0(𝑡)

𝑆0(𝑡)
exp(𝛽′𝑧) = 𝑂0(𝑡) exp(𝛽′𝑧)  

 
where, z is a covariate vector, S0(t) is the baseline 
survival function that is taken from a suitable 
distribution, and exp (𝛽′𝑧)is a multiplier reflecting 
the proportionate increase in the odds associated 
with covariate values z (Rodriguez, 2007). Here, the 
covariates act multiplicatively on the odds of 
survival beyond t. The model is a linear model for the 
log-odds ratio. As for the PH model, a non-
parametric estimate of the baseline hazard function 
can be obtained. The model is then fitted by 
estimating β–parameters in the linear component of 
the model and the baseline survival function from 
the data (Collett, 1994). In PO model there is an 
assumption that the odds ratio is constant over time. 
The PO model with its property of convergent 
hazard functions is of considerable value in 
modelling survival data with non-proportional 
hazards. 

To allow non-proportional hazards, Royston 
(2001), Royston and Parmar (2002), and Lambert 
and Rosyton (2009) developed flexible parametric 
models based initially on the assumption of either 
PH or PO scaling of covariate effects. Generically, the 
class of such models is based on transformation of 
the survival function by a link function g(.) 

 
𝑔[𝑆(𝑡; 𝑧)] = 𝑔[𝑆0(𝑡)]+𝛽′𝑧  

 
where, S0(t)=S(t;0) is the baseline survival function 
and β is a vector of parameters to be estimated for 
covariates z. Within this framework, Younes and 
Lachin (1997) used the parameterized link function 
of Aranda-Ordaz (1981) where θ = 1 corresponds to 
the proportional odds model and θ→ 0 to the 
proportional hazards model (Royston and Parmar, 

2002). For estimation, Younes and Lachin (1997) 
used B-splines, Shen (1998) used sieve maximum 
likelihood and monotone splines and Royston and 
Parmar (2002) used natural cubic splines to model 
g[S0(t)] within the Aranda-Ordaz family of link 
function.  

2.2. Parametric survival models with splines  

Splines are flexible mathematical functions 
defined by piecewise polynomials and used in 
regression type models for non-linear effects. The 
points at which the polynomials join are called knots. 
Several techniques have been developed for 
exploring the functional forms. The most common 
splines used in practice are cubic splines. However, 
splines can be of any degree, n. Also, function is 
forced to have continuous 0th, 1st and 2nd 
derivatives (Lambert and Royston, 2009). In survival 
analysis, the splines are used in different aspects in 
several studies such as Hastie and Tibshirani 
(1990a,b), Gamerman and West (1987), O'Sullivan 
(1988), Durrelman and Simon (1989), Sleeper and 
Harrington (1990), Zucker and Karr (1990), 
Kooperberg and Stone (1992), Gray (1992, 1994), 
Rosenberg (1995), Nelson et al. (2007), 
Govindarajulu et al. (2009), Lambert et al. (2010), 
Andersson et al. (2011), Bantis et al. (2012), and 
Rutherford et al. (2015). 

The advantages of parametric survival models 
can be given as: the survival and hazard functions 
can be derived and manipulated, they do not have an 
assumption of proportional hazards, they allow 
prediction at any time point for any set of covariates 
and they can use of restricted cubic splines for 
hazard function. Besides, the key point of parametric 
survival models is the assumption of the survival 
time distribution. This creates the need of more 
flexible models. One of the alternatives is modelling 
the baseline cumulative odds or hazard function as 
natural cubic spline function of log time (Royston 
and Parmar, 2002). 

The one of the most common distribution of 
survival time is Weibull distribution. Suppose that T 
is random variable having a Weibull distribution 
with characteristic life µ and shape parameter p. 
Then the log cumulative hazard function is given by, 

 

𝑙𝑛𝐻(𝑡) = 𝑙𝑛 [(
𝑡

𝜇
)

𝑝
] = 𝑝𝑥 − 𝑝𝑙𝑛𝜇 =

𝑥−𝑙𝑛𝜇

𝜎
= 𝛾0 + 𝛾1𝑥  

 
which is linear in x=lnt. If the distribution of T 
departs from Weibull then lnH(t) will be related to x 
by a non-linear function 𝑠 ≡ 𝑠(𝑥, 𝛾) where survival 
function S(t) is exp(-exps) (Royston and Parmar, 
2002). 

The distribution of the survival time may be 
different than most common ones, and then more 
flexible parametric models can be used. The 
approach taken by Royston and Parmar (2002) is to 
model the logarithm of the baseline cumulative odds 
or hazard function as a natural cubic spline function 
of log time, so the general function 𝑠(𝑥, 𝛾) is 
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approximated by a spline. The PH spline model with 
fixed covariate vector z may be written (Royston and 
Parmar, 2002) 

 
𝑔[𝑆(𝑡; 𝑧)] = 𝑙𝑛{−𝑙𝑛𝑆(𝑡; 𝑧)} = 𝑙𝑛𝐻(𝑡; 𝑧) = 𝑙𝑛𝐻0(𝑡) + 𝛽′𝑧 =
𝑠(𝑥; 𝛾) + 𝛽′𝑧  
 

whereas for the PO spline model, 
 

𝑔[𝑆(𝑡; 𝑧)] = 𝑙𝑛{𝑆(𝑡; 𝑧)−1 − 1} = 𝑙𝑛𝑂(𝑡; 𝑧) = 𝑙𝑛𝑂0(𝑡) +
𝛽′𝑥 = 𝑠(𝑥; 𝛾) + 𝛽′𝑧  

 
The restricted cubic splines are defined as cubic 

splines constrained to be linear beyond boundary 
knots first knot and final knot. Restricted cubic 
splines with K knots can be fit by creating K-1 
derived variables. For knots k1, …, kK, a restricted 
cubic spline function can be written as 

 
𝑠(𝑥) = 𝛾0 + 𝛾1𝑧1 + ⋯ + 𝛾𝐾−1𝑧𝐾−1.  

 
A restricted cubic spline function of lnt, with 

knots k0, can be written as 𝑠{ln(𝑡) 𝐼 𝛾,  𝑘0}. This is 
then used for baseline log cumulative hazard in PH 
model. The estimation of the models is done by using 
full likelihood which is discussed by Royston and 

Parmar (2002) and Lambert and Rosyton (2009) in 
detail. 

3. Application: Gastric cancer 

Gastric cancer is the third most common cause of 
cancer-related death in the world and it remains 
difficult to cure. In this study, we consider patients 
who were diagnosed with gastric cancer. The data 
used here is taken from Eroglu et al. (1997), but 
some of changes were made in the original data set, 
covariates and categories of the covariates to apply 
flexible parametric models. In the following analysis 
death is the endpoint of interest. The survival time 
(min=1, max=67) is measured in months and the 
mean survival time is obtained as 42.33±2.94. 
Patients who were still alive at the end of the follow-
up period were treated as censored observations. 
The complete data set consists of 106 patients, of 
which 36.8% are censored. In the concept of 
analysis, prognostic factors which affect the survival 
time of gastric cancer patients are tried to be 
determined by flexible parametric survival models. 

The mean age is obtained as 56.68 ± 1.2. The 
information about the covariates used in the 
following study is given in Table 1. 

 
Table 1: The covariates of the gastric cancer data 

Covariates 
Number of total 

observations 
Number of failed 

observations 
Number of censored 

observations 

Chemotherapy 
No 
Yes 

11 (%10.4) 
95 (%89.6) 

1 (%2.6) 
38 (%97.4) 

10 (%14.9) 
57 (%85.1) 

Pathological stage 
1 
2 
3 

14 (%13.2) 
23 (%21.7) 
69 (%65.1) 

2 (%5.1) 
6 (%15.4) 

31 (%79.5) 

12 (%17.9) 
17 (%25.4) 
38 (%56.7) 

Sex 
Female 

Male 
33 (%31.1) 
73 (%68.9) 

12 (%30.8) 
27 (%69.2) 

21 (%31.3) 
46 (%68.7) 

Metastasis 
No 
Yes 

74 (%69.8) 
32 (%30.2) 

16 (%41.0) 
23 (%59.0) 

58 (%89.6) 
9 (%13.4) 

Smoking 
No 
Yes 

54 (%50.9) 
52 (%49.1) 

20 (%51.3) 
19 (%48.7) 

34 (%50.7) 
33 (%49.3) 

Alcohol 
No 
Yes 

94 (%88.7) 
12 (%11.3) 

35 (%89.7) 
4 (%10.3) 

59 (%88.1) 
8 (%11.9) 

Ulcer treatment 
No 
Yes 

61 (%57.5) 
45 (%42.5) 

25 (64.1) 
14 (35.9) 

36 (53.7) 
31 (46.3) 

Family history 
No 
Yes 

79 (%74.5) 
27 (%25.5) 

27 (%69.2) 
12 (%30.8) 

52 (%77.6) 
15 (%22.4) 

Tumor stage 
1 
2 

27 (%25.5) 
79 (%74.5) 

5 (%12.8) 
34 (%87.2) 

22 (%32.8) 
45 (%67.2) 

Muscle contraction 
No 
Yes 

102 (%96.2) 
4 (%3.8) 

37 (%94.9) 
2 (%5.1) 

65 (%97.0) 
2 (%3.0) 

Radiotherapy 
No 
Yes 

34 (%32.1) 
72 (%67.9) 

14 (%35.9) 
25 (%64.1) 

20 (%29.9) 
47 (%70.1) 

 

In the non-parametric approach to survival 
analysis we provide the estimates of Kaplan-Meier 
(KM) survival function and the log-rank test. The log-
rank test allows for testing the equality of survival 
functions different groups. We observe that the 
equality of the survival functions of metastasis 
(p=0.000), family history (p=0.032) and muscle 
contraction (p=0.000) are rejected wheras it is not 
rejected for the others at a 95% confidence level.  

Firstly, Cox PH model is applied to data set and 
AIC is obtained as 315.672. According to this model, 
metastasis and also muscle contraction are found 
significant at 95% confidence level. Patients with 
metastasis have 2.95 times the hazard for the 

patients without metastasis. Patients with muscle 
contraction have 8.358 times the hazard for the 
patients without muscle contraction.  

The PH assumption of Cox PH model is shown by 
a correlation analysis of Schoenfeld (1982) residuals 
with time. All the covariates except metastasis 
(p=0.0001) hold the PH assumption. Therefore PH 
assumption does not satisfy for this data set and the 
results of Cox PH model becomes suspicious. Then 
flexible parametric survival models are applied to 
the data set as an alternative survival model. Here 
the Royston (2001), Royston and Parmar (2002) and 
Lambert and Rosyton (2009) approach is used. They 
use cubic splines and suggest selecting the df for the 
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spline part of the model by minimizing the Akaike 
Information Criterion (AIC). The AIC may also be 
used to select the scale for the model. Table 2 shows 

the AICs for the gastric cancer data for PH and PO 
models with between 1 and 6 df (0 and 5 knots). 

 
Table 2: The AIC values for several spline survival models for the gastric cancer data 

Number of knots 0 1 2 3 4 5 
AIC(PH model) 190.9251 190.0635 187.7287* 188.5921 188.5103 190.8589 
AIC(PO model) 191.3755 192.1880 189.8785 190.4991 190.2563 192.6175 

 

The model minimizing the AIC is the PH model 
with 2 knots for which AIC = 187.7287. The PH 

model with 2 knots is significant (p=0.0008) and the 
results are given by Table 3. 

 
Table 3: The Results of PH model with spline 

Covariate �̂� Std. Error p-value Hazard ratio 95% Confidence interval for hazard ratio 

Age -0.004 0.019 0.837 0.996 -0.041 0.033 

Chemotherapy 
No 
Yes 

0.821 1.233 0.506 2.272 -1.596 3.237 

Pathological stage 
1 
2 
3 

0.296 
0.519 

1.078 
1.234 

0.784 
0.674 

1.344 
1.680 

-1.819 
-1.900 

2.410 
2.938 

Sex 
Female 

Male 
-0.427 0.529 0.419 0.652 -1.463 0.608 

Metastasis 
No 
Yes 

1.129 0.394 0.004* 3.092 0.356 1.902 

Smoking 
No 
Yes 

0.275 0.464 0.553 1.317 -0.634 1.184 

Ulcer treatment 
No 
Yes 

-0.478 0.417 0.252 0.620 -1.294 0.339 

Family history 
1 
2 

0.753 0.402 0.061 2.124 -0.035 1.541 

Alcohol 
No 
Yes 

0.207 0.631 0.743 1.229 -1.030 1.444 

Tumor stage 
1 
2 

0.560 0.831 0.500 1.751 -1.068 2.189 

Muscle contraction 
No 
Yes 

2.449 1.011 0.015* 11.572 0.467 4.430 

Radiotherapy 
No 
Yes 

-0.461 0.420 0.273 0.631 -1.285 0.363 

 

According to the PH model with splines (k=2), 
metastasis and muscle contraction are found as 
important risk factors which effect the death risk of 
the patient.  Patients with metastasis have 3.01 times 
the hazard for the patients without metastasis. 
Patients with muscle contraction have 11.57 times 
the hazard for the patients without muscle 
contraction. The significance of the covariates is 
same with Cox PH model; however the difference in 
hazard ratios and model fit is distinctly obvious. This 
difference is so important that it cannot be ignored 
in survival data sets. 

4. Conclusion 

Survival data is generally analyzed by semi-
parametric and parametric survival models. The 
semi-parametric model named as Cox PH model 
allows the distribution of the survival time to be 
unknown. The baseline hazard is not necessary to 
estimate hazard ratio. The model may become 
invalid in case of non-proportional hazards and it is 
less consistent with theoretical survival function. 
Parametric survival models are well known models, 
since it completely specify hazard and survival 
functions and may possibly predict time-quantile. 
However, there is an assumption on underlying 
distribution. The disadvantage of these models 
brings about the suggestion of flexible parametric 

survival models. These models use becomes popular 
especially in flexibility by increasing the degrees of 
freedom of the spline functions in estimating hazard 
function. In this study, Cox PH model and also 
flexible survival models with splines (PH with spline 
and PO with spline) are used in analyzing gastric 
cancer data.  

The models are tried to determine the possible 
effects of age, chemotherapy, pathological stage, sex, 
metastasis, smoking, ulcer treatment, family history, 
alcohol, tumor stage, muscle contraction and 
radiotherapy on survival. The best model is obtained 
as PH model with splines within the models taken 
into consideration in this study. Metastasis and 
muscle contraction are found as important risk 
factors in this cancer data.  
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